Chapitre 12. Suites réelles et complexes

Convergence

1.1 Définition

Définition 1.1. Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite réelle.

- * Soit $l \in \mathbb{R}$. On dit que u converge (ou <u>tend</u>) vers l si $\forall \varepsilon > 0$, $\exists N \in \mathbb{N} : \forall n \geq N$, $|u_n l| \leq \varepsilon$ Dans ce cas, on note $u_n \xrightarrow[n \to +\infty]{} l$ ou $u \to l$ ou $\lim_{n \to +\infty} u_n = l$
- * On dit que u diverge si elle ne converge vers aucun $l \in \mathbb{R}$

1.2 Premières propriétés

Proposition 1.2 (Unicité de la limite). Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
. Soit $l, l' \in \mathbb{R}$ tels que
$$\begin{cases} u_n \xrightarrow[n \to +\infty]{} l \\ u_n \xrightarrow[n \to +\infty]{} l' \end{cases}$$
 Alors $l = l'$

Proposition 1.3. Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
 et $l \in \mathbb{R}$
On a $u_n \xrightarrow[n \to +\infty]{} l \iff |u_n - l| \xrightarrow[n \to \infty]{} 0$

Proposition 1.4. Toute suite convergente est bornée.

Lemme 1.5. Toute suite bornée à partir d'un certain rang (àpcr) est bornée.

Proposition 1.6 (Caractère asymptotique de la limite).

La convergence d'une suite ne dépend pas de ses premiers termes.

Plus précisément, soit $u, v \in \mathbb{R}^{\mathbb{N}}$ égales àpcr.

Alors u converge si et seulement si v converge. Si c'est le cas, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$

1.3 Limites et inégalités

Théorème 1.7 (Passage à la limite dans les inégalités larges).

Soit
$$u, v \in \mathbb{R}^{\mathbb{N}}$$
 et $l, l' \in \mathbb{R}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$ et $v_n \xrightarrow[n \to +\infty]{} l'$. On suppose $\forall n \in \mathbb{N}, u_n \leq v_n$ Alors $l \leq l'$

Théorème 1.8 (\mathbb{R}_+^* est ouvert). Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} l > 0$ Alors u est strictement positive àper, càd $\exists N \in \mathbb{N} : \forall n \geq N, u_n > 0$

1.4 Limite infinie

Définition 1.9. Soit $u \in \mathbb{R}^{\mathbb{N}}$

- * On dit que u tend (ou diverge) vers $+\infty$ si $\forall A \in \mathbb{R}$, $\exists N \in \mathbb{N} : \forall n \geq N, u_n \geq A$ Dans ce cas, on note $u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $u \to +\infty$ ou $\lim_{n \to +\infty} u_n = +\infty$ * On dit que u tend (ou diverge) vers $-\infty$ si $\forall A \in \mathbb{R}$, $\exists N \in \mathbb{N} : \forall n \geq N$, $u_n \leq A$

Définition 1.10. La droite numérique achevée est l'ensemble $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty; +\infty\}$

Proposition 1.11 (Unicité de la limite dans $\overline{\mathbb{R}}$). Soit $n \in \mathbb{R}^{\mathbb{N}}$ et $l, l' \in \overline{\mathbb{R}}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$ et $u_n \xrightarrow[n \to +\infty]{} l'$ Alors l = l'

1

Théorèmes de convergence 2

2.1 **Opérations**

On munit $\overline{\mathbb{R}}$ d'une addition et d'une multiplication "partielles", càd qu'elles ne sont pas définies pour tous les couples d'éléments de $\overline{\mathbb{R}}$

+	$-\infty$	$b \in \mathbb{R}$	+∞
$-\infty$	-∞	-∞	X
$a \in \mathbb{R}$	-∞	a+b	+∞
	X	+∞	+∞

×	$-\infty$	$b \in \mathbb{R}_{-}^{*}$	0	$b \in \mathbb{R}_+^*$	+∞
$-\infty$	+∞	+∞	X	-∞	$-\infty$
$a \in \mathbb{R}_{-}^{*}$	+∞	ab	0	ab	$-\infty$
0	X	0	0	0	X
$a \in \mathbb{R}_+^*$	-∞	ab	0	ab	+∞
+∞	$-\infty$	$-\infty$	X	+∞	+∞

Théorème 2.1. Soit $u,v\in\mathbb{R}^{\mathbb{N}}$ telles que $\begin{cases} u_n\to l_1\in\overline{\mathbb{R}} \\ v_n\to l_2\in\overline{\mathbb{R}} \end{cases}$ et $\lambda\in\mathbb{R}$

- * On a $|u_n| \xrightarrow[n \to +\infty]{} |l_1|$ * Si $\lambda \in \mathbb{R}^*$, $\lambda u_n \xrightarrow[n \to +\infty]{} \lambda l_1$
- * Si $l_1 + l_2$ est bien définie, $u_n + v_n \xrightarrow[n \to +\infty]{} l_1 + l_2$
- * Si $l_1 l_2$ est bien définie, $u_n v_n \xrightarrow[n \to +\infty]{n} l_1 l_2$

Lemme 2.2. Soit
$$u, v \in \mathbb{R}^{\mathbb{N}}$$
 telles que $\begin{cases} u \text{ born\'ee} \\ v_n \xrightarrow[n \to +\infty]{} +\infty \end{cases}$

Lemme 2.3. Soit
$$u, v \in \mathbb{R}^{\mathbb{N}}$$
 telles que
$$\begin{cases} u \text{ bornée} \\ v_n \xrightarrow[x \to +\infty]{} 0 \end{cases}$$
 Alors $u_n v_n \xrightarrow[n \to +\infty]{} 0$

Théorème 2.4. Soit $u \in \mathbb{R}^{\mathbb{N}}$ qui ne s'annule pas.

- * Si $u_n \xrightarrow[n \to +\infty]{} l \in \mathbb{R}^*$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{l}$
- * Si $u_n \xrightarrow[n \to +\infty]{} \pm \infty$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} 0$ * Si $u_n \xrightarrow[n \to +\infty]{} 0$ et que $\forall n \in \mathbb{N}$, $u_n > 0$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} +\infty$

2.2 Théorème de la limite monotone

Théorème 2.5. Soit $u \in \mathbb{R}^{\mathbb{N}}$ croissante.

- * Si u est majorée, elle converge : on peut trouver $l \in \mathbb{R}$ tel que $\begin{cases} \forall n \in \mathbb{N}, u_n \leq l \\ u_n \xrightarrow{n \in \mathbb{N}} l \end{cases}$
- * Si *u* n'est pas majorée, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$

Soit $u \in \mathbb{R}^{\mathbb{N}}$ décroissante.

- * Si u est minorée, il existe $l \in \mathbb{R}$ tel que $\begin{cases} \forall n \in \mathbb{N}, \ u_n \geq l \\ u_n \xrightarrow[n \to +\infty]{} l \end{cases}$ * Si u n'est pas minorée, alors $u_n \xrightarrow[n \to +\infty]{} -\infty$

Définition 2.6 (Suites adjacentes). Soit $u, v \in \mathbb{R}^{\mathbb{N}}$. On dit que u et v sont adjacents si :

* *u* croît et *v* décroît.

*
$$v_n - u_n \xrightarrow[n \to +\infty]{} 0$$

Théorème 2.7 (des suites adjacentes). Soit $u, v \in \mathbb{R}^{\mathbb{N}}$ deux suites adjacentes.

Alors u et v convergent (et leurs limites sont égales).

Corollaire 2.8 (Théorème des segments emboîtés). Soit $([a_n,b_n])_{n\in\mathbb{N}}$ une suite de segments (non vides) emboîtés, càd telle que $\forall n\in\mathbb{N}$, $[a_{n+1},b_{n+1}]\subseteq[a_n,b_n]$. On suppose en outre $b_n-a_n\xrightarrow[n\to+\infty]{}0$ Alors $\bigcap_{n\in\mathbb{N}}[a_n,b_n]$ est un singleton.

2.3 Théorèmes de minoration, de majoration, d'encadrement

Théorème 2.9 (d'encadrement / des gendarmes). Soit $u, v, w \in \mathbb{R}^{\mathbb{N}}$, $l \in \mathbb{R}$ telles que

$$\begin{cases} \forall n \in \mathbb{N}, u_n \leq v_n \leq w_n \\ u_n \xrightarrow[n \to +\infty]{} l, w_n \xrightarrow[n \to +\infty]{} l \end{cases}$$

Alors $v_n \xrightarrow[n \to +\infty]{} l$

Corollaire 2.10. Soit $u, h \in \mathbb{R}^{\mathbb{N}}$, $l \in \mathbb{R}$ telles que :

$$\begin{cases} \forall n \in \mathbb{N}, |u_n - l| \le h_n \\ h_n \xrightarrow[n \to +\infty]{} 0 \end{cases}$$

Alors $u_n \xrightarrow[n \to +\infty]{} l$

Théorème 2.11 (de minoration). Soit $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que $\forall n \in \mathbb{N}$, $u_n \leq v_n$ et $u_n \xrightarrow[n \to +\infty]{} +\infty$ Alors $v_n \xrightarrow[n \to +\infty]{} +\infty$

Théorème 2.12 (de majoration). Soit $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que $\forall n \in \mathbb{N}$, $u_n \leq v_n$ et $v_n \xrightarrow[n \to +\infty]{} -\infty$ Alors $u_n \xrightarrow[n \to +\infty]{} -\infty$

2.4 Théorème de Cesàro

Théorème 2.13. Soit $u \in \mathbb{R}^{\mathbb{N}}$ et $l \in \mathbb{R}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$

Soit
$$(c_n)_{n\in\mathbb{N}} = \left(\frac{1}{n+1}\sum_{k=0}^n u_k\right)_{n\in\mathbb{N}}$$
 Alors $c_n \xrightarrow[n\to+\infty]{} l$

Corollaire 2.14 (Lemme de l'escalier). Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que $u_{n+1} - u_n \xrightarrow[n \to +\infty]{} l \in \mathbb{R}$ Alors $\frac{u_n}{n} \xrightarrow[n \to +\infty]{} l$

3 Suites extraites

3.1 Définitions et premières propriétés

Définition 3.1.

- * Une extractrice est une fonction $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante.
- * Soit $\overline{u \in \mathbb{R}^{\mathbb{N}}}$. Une suite extrictrice (ou une sous-suite) de u est une suite de la forme $\left(u_{\varphi(k)}\right)_{k \in \mathbb{N}}$

Proposition 3.2. Soit $u \in \mathbb{R}^{\mathbb{N}}$ et $l \in \overline{\mathbb{R}}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$. Soit φ une extractrice.

Alors
$$u_{\varphi(k)} \xrightarrow[k \to +\infty]{} l$$

Lemme 3.3. $\forall k \in \mathbb{N}, \varphi(k) \geq k$

Proposition 3.4. Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
 et $l \in \overline{\mathbb{R}}$ tels que $u_{2k} \xrightarrow[k \to +\infty]{} l$ et $u_{2k+1} \xrightarrow[k \to +\infty]{} l$ Alors $u_n \xrightarrow[n \to +\infty]{} l$

3.2 Construction de sous-suites particulières

Proposition 3.5. Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite non majorée.

Alors il existe une extractrice φ telle que $u_{\varphi(k)} \xrightarrow[k \to +\infty]{} +\infty$

Proposition 3.6. Soit $u \in \mathbb{R}^{\mathbb{N}}$, $(\varepsilon_k)_{k \in \mathbb{N}} \in (\mathbb{R}_+^*)^{\mathbb{N}}$ et $l \in \mathbb{R}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$

Alors il existe une extractrice φ telle que $\forall k \in \mathbb{N}$, $\left|u_{\varphi(k)} - l\right| \leq \varepsilon_k$

3.3 Théorème de Bolzano-Weierstrass

Théorème 3.7 (Bolzano-Weierstrass). Toute suite réelle bornée admet une sous-suite convergente.

3.4 Valeurs d'adhérence

Définition 3.8. Soit $u \in \mathbb{R}^{\mathbb{N}}$

Un réel $l \in \mathbb{R}$ est une <u>valeur d'adhérence</u> de u s'il existe une extractrice φ telle que $u_{\varphi(k)} \xrightarrow[k \to +\infty]{} l$

Proposition 3.9. Une suite bornée possédant une unique valeur d'adhérence converge.

Définition 3.10. Soit $u \in \mathbb{R}^{\mathbb{N}}$ bornée. On définit :

* La <u>limite supérieure</u> de u, notée $\limsup u$) (ou $\lim_{n \to +\infty} \sup u_n$ ou $\overline{\lim_{n \to +\infty}} u_n$)

$$\limsup(u) = \lim_{n \to +\infty} \sup_{p \ge n} u_p = \sup\{u_p \mid p \ge n\} \quad (= \inf_{n \in \mathbb{N}} \sup_{p \ge n} u_n)$$

* La <u>limite inférieure</u> de u, notée $\liminf (u)$ (ou $\lim_{n \to +\infty} \inf u_n$ ou $\lim_{n \to +\infty} u_n$)

$$\lim\inf(u) = \lim_{n \to +\infty} \inf_{p \ge n} u_p = \inf\{u_p \mid p \ge n\} \quad (= \sup_{n \in \mathbb{N}} \inf_{p \ge n} u_p)$$

4

Proposition 3.11. Soit $u \in \mathbb{R}^{\mathbb{N}}$ bornée.

- $\ast \ \lim \sup(u)$ est la plus grande valeur d'adhérence de u
- * lim inf(u) est la plus petite valeur d'adhérence de u
- * La suite u converge si et seulement si $\limsup(u) = \liminf(u)$

4 Caractérisation séquentielle

4.1 Caractérisation séquentielle de l'adhérence

Proposition 4.1. Soit $A \subseteq \mathbb{R}$ et $x \in \mathbb{R}$

Alors $x \in \overline{A}$ si et seulement s'il existe une suite $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ telle que $a_n \xrightarrow[n \to +\infty]{} x$

Corollaire 4.2. Soit $A \subseteq \mathbb{R}$ non vide et majorée et $S \in \mathbb{R}$

Alors $S = \sup(A)$ ssi S majore A et il existe $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ telle que $a_n \xrightarrow[n \to +\infty]{} S$

4.2 Caractérisation séquentielle de la densité

On sait déjà qu'une partie $A\subseteq\mathbb{R}$ est dense ssi $\overline{A}=\mathbb{R}$. On obtient la caractérisation suivante :

Proposition 4.3. Soit $A \subseteq \mathbb{R}$.

A est dense dans $\mathbb R$ ssi $\forall x \in \mathbb R$, $\exists (a_n)_{n \in \mathbb N} \in A^{\mathbb N} : a_n \xrightarrow[n \to +\infty]{} x$

5 Extension aux suites complexes

5.1 Généralités

Définition 5.1. Soit $u \in \mathbb{C}^{\mathbb{N}}$ et $l \in \mathbb{C}$

On dit que u converge vers l si $\forall \varepsilon > 0$, $\exists N \in \mathbb{N} : \forall n \geq N$, $|u_n - l| \leq \varepsilon$

Proposition 5.2. Soit $u \in \mathbb{C}^{\mathbb{N}}$ et $l \in \mathbb{C}$

On a $u_n \xrightarrow[n \to +\infty]{} l \iff |u_n - l| \xrightarrow[n \to +\infty]{} 0$

Définition 5.3. Une suite $u \in \mathbb{C}^{\mathbb{N}}$ est <u>bornée</u> si $\forall C \in \mathbb{R}_+ : \forall n \in \mathbb{N}, |u_n| \leq C$

Proposition 5.4. Toute suite complexe convergente est bornée.

Définition 5.5. Soit $u \in \mathbb{C}^{\mathbb{N}}$

On dit que \underline{u} tend vers l'infini si $|u_n| \xrightarrow[n \to +\infty]{} +\infty$

5.2 Lien avec le cas réel

Théorème 5.6. Soit $u \in \mathbb{C}^{\mathbb{N}}$ et $l \in \mathbb{C}$

Alors

$$u_n \xrightarrow[n \to +\infty]{} l \iff \begin{cases} \operatorname{Re} u_n \xrightarrow[n \to +\infty]{} \operatorname{Re} l \\ \operatorname{Im} u_n \xrightarrow[n \to +\infty]{} \operatorname{Im} l \end{cases}$$

Théorème 5.7 (Bolzano-Weierstrass, cas complexe).

Toute suite complexe bornée possède une sous-suite convergente.

5.3 Suite géométrique

Théorème 5.8. Soit $a \in \mathbb{C}$

Alors $(a^n)_{n\in\mathbb{N}}$ converge ssi |a|<1 (auquel cas $a^n\xrightarrow[n\to+\infty]{}0$) ou a=1 (auquel cas $a^n\xrightarrow[n\to+\infty]{}1$) et $(a^n)_{n\in\mathbb{N}}$ tend vers l'infini ssi |a|>1

6 Suites récurrentes

On étudie des suites récurrentes (d'ordre 1), càd des suites $u \in \mathbb{R}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, où $f: I \to \mathbb{R}$ est une certaine fonction, que l'on appelle itératrice

6.1 Itératrice croissante : un exemple

Étudions la suite
$$(u_n)_{n\in\mathbb{N}}$$
 définie par
$$\begin{cases} u_n=3\\ \forall n\in\mathbb{N},\ u_{n+1}=\sqrt{2+u_n} \end{cases}$$

On observe que $[-2, +\infty]$ est un intervalle stable donc la suite est bien définie.

1) La suite décroit.

Pour tout $n \in \mathbb{N}$ notons P(n): " $n_{n+1} \le u_n$ "

Initialisation : On a $u_1 = f(3) \le 3 = u_0$

Hérédité : Soit $n \in \mathbb{N}$ tel que P(n)

On a donc $u_{n+1} \le u_n$

Par croissance de f, $f(u_{n+1} \le f(u_n)$, càd $u_{n+2} \le u_{n+1}$, d'où P(n+1), ce qui clôt la récurrence.

2) u est minorée.

En effet, $[-2, +\infty[$ est stable donc $\forall n \in \mathbb{N}, u_n \in [-2, +\infty[$ (récurrence immédiate)

D'après le théorème de la limite monotone, on peut don trouver $l \in \mathbb{R}$ tel que $u_n \xrightarrow[n \to +\infty]{} l$

Par passage à la limite dans les inégalités larges, $l \ge 2$ (càd $l \in [-2, +\infty[)$

3) Montrons que l est nécessairement un point fixe de f, càd f(l)=l.

On a $(u_{n+1})_{n\in\mathbb{N}} = (f(u_n))_{n\in\mathbb{N}}$

Par extraction, $u_{n+1} \xrightarrow[n \to +\infty]{} l$

Par continuité de f, $f(u_n) \xrightarrow[n \to +\infty]{} f(l)$

Par unicité de la limite, f(l) = l

Puisque 2 est le seul point fixe de f, on a $u_n \xrightarrow[n \to +\infty]{} 2$

 $\underline{\text{Variante}}: \text{Cas de la suite } (v_n)_{n \in \mathbb{N}} \text{ définie par } \begin{cases} v_0 = 1 \\ \forall n \in \mathbb{N}, \, v_{n+1} = f(v_n) \end{cases}$

Comme dans (1):

1)' La suite v est monotone car f est croissante.

Comme $v_1 \ge v_0$, cette fois v croît.

2)' On doit trouver un intervalle stable plus petit.

Ici, [-2,2] est stable et contient v_0 donc v est à valeurs dans [-2,2], donc majorée.

3)' La suite converge nécessairement vers un point fixe.

$$v_n \xrightarrow[n \to +\infty]{} 2$$

6.2 Itératrice décroissante : un exemple

Étudions la suite u définie par $\begin{cases} u_0=1\\ \forall n\in\mathbb{N},\ u_{n+1}=\frac{1}{2+u_n} \end{cases}$

Posons
$$f: \begin{cases} \mathbb{R} \setminus \{2\} \to \mathbb{R} \\ x \mapsto \frac{1}{2+x} \end{cases}$$

Le segment [0,1] est stable et inclus dans le domaine de f. On en déduit que la suite u est bien définie et à valeurs dans [0, 1]

1) Les sous-suites
$$(u_{2k})_{k\in\mathbb{N}}$$
 et $(u_{2k+1})_{k\in\mathbb{N}}$ sont monotones, de monotonies opposées.
 En effet, $\forall k\in\mathbb{N}$;
$$\begin{cases} u_{2(k+1)}=(f\circ f)(u_{2k})\\ u_{2(k+1)+1}=(f\circ f)(u_{2k+1}) \end{cases}$$
 Comme $f\circ f$ croît (par opération), les sous-suites sont monotones.

Comme $u_0=1, u_1=\frac{1}{3}$ et $u_2=\frac{3}{7}$, on a $u_2\leq u_0$, donc $(u_{2k})_{k\in\mathbb{N}}$ décroît d'où $u_3\geq u_1$ (en appliquant f), ce que donne $(u_{2k+1})_{k\in\mathbb{N}}$ croît.

2)Les deux sous-suites sont à valeurs dans [0, 1] donc bornées.

D'après le théorème de la limite monotone

$$u_{2k} \xrightarrow[k \to +\infty]{} l_0 \in [0,1]$$

$$u_{2k+1} \xrightarrow[k \to +\infty]{} l_1 \in [0,1]$$

3)On a
$$\underbrace{u_{2k+1}}_{k\to +\infty} = \underbrace{f(u_{2k})}_{k\to +\infty} f(l_0)$$
 (par continuité de f)

Donc $f(l_0) = l_1$ par unicité de la limité.

$$\underbrace{\frac{u_{2k+2}}{\underset{k\to +\infty}{\longleftarrow}} l_0}_{\text{$k\to +\infty$}} = \underbrace{\frac{f(u_{2k+1})}{\underset{k\to +\infty}{\longleftarrow}} f(l_1)}_{\text{$k\to +\infty$}}$$
 Donc $f(l_1) = l_0$ par unicité de la limite.

On obtient alors que
$$\begin{cases} f(f(l_0)) = l_0 \\ f(f(l_1)) = l_1 \end{cases}$$

Déterminons les points fixes de f

Soit $x \in \mathbb{R} \setminus \{2\}$. On a :

$$f(x) = x \iff \frac{1}{2+x} = x$$

$$\iff 1 = 2x + x^2$$

$$\iff (x+1)^2 = 2$$

$$\iff x = -1 \pm \sqrt{2}$$

Déterminons les points fixes de $f \circ f$:

Soit $x \in \mathbb{R}$ tel que f(f(x)) sont bien définit.

$$f(f(x)) = x \iff \frac{1}{2 + \frac{1}{2 + x}} = x$$

$$\iff \frac{x + 2}{2x + 5} = x$$

$$\iff 2x^2 + 4x - 1 = 0$$

$$\iff x^2 + 2x - 1 = 0$$

$$\iff x = -1 \pm \sqrt{2}$$

7

Comme
$$l_0, l_1 \in [0,1]$$
, on a $l_0 = l_1 = \sqrt{2} - 1$

$$Donc \begin{cases} u_{2k} \xrightarrow[k \to +\infty]{} \sqrt{2} - 1 \\ u_{2k+1} \xrightarrow[k \to +\infty]{} \sqrt{2} - 1 \end{cases}$$
Ainsi, $u_n \xrightarrow[n \to +\infty]{} \sqrt{2} - 1$

6.3 Résumé des résultats utiles

Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ où $f: I \to \mathbb{R}$

- * Si $S \subseteq I$ est stable et $u_0 \in S$, alors u (est bien définie et) à valeurs dans S.
- * Si l'itératrice f est croissante, u est monotone.
- * Si l'itératrice f est décroissante, $(u_{2k})_{k\in\mathbb{N}}$ et $(u_{2k+1})_{k\in\mathbb{N}}$ sont monotones, de monotonies opposées.
- * Si u converge vers l et que f est continue (en l), alors f(l) = l.